4.7 Article

Dynamic Representation Learning via Recurrent Graph Neural Networks

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSMC.2022.3196506

关键词

Representation learning; Recurrent neural networks; Matrix decomposition; Feature extraction; Computational modeling; Biological system modeling; Task analysis; Dynamic graphs; graph neural networks (GNNs); graph representation learning (GRL); node embeddings; recurrent neural network (RNN)

向作者/读者索取更多资源

This article introduces a dynamic graph representation learning model called DynGNN, which embeds an RNN into a graph neural network to better capture the temporal dynamics and topological correlations of graphs and achieves significant improvements in multiple tasks.
A large number of real-world systems generate graphs that are structured data aligned with nodes and edges. Graphs are usually dynamic in many scenarios, where nodes or edges keep evolving over time. Recently, graph representation learning (GRL) has received great success in network analysis, which aims to produce informative and representative features or low-dimensional embeddings by exploring node attributes and network topology. Most state-of-the-art models for dynamic GRL are composed of a static representation learning model and a recurrent neural network (RNN). The former generates the representations of a graph or nodes from one static graph at a discrete time step, while the latter captures the temporal correlation between adjacent graphs. However, the two-stage design ignores the temporal dynamics between contiguous graphs during the learning processing of graph representations. To alleviate this problem, this article proposes a representation learning model for dynamic graphs, called DynGNN. Differently, it is a single-stage model that embeds an RNN into a graph neural network to produce better representations in a compact form. This takes the fusion of temporal and topology correlations into account from low-level to high-level feature learning, enabling the model to capture more fine-grained evolving patterns. From the experimental results on both synthetic and real-world networks, the proposed DynGNN yields significant improvements in multiple tasks compared to the state-of-the-art counterparts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据