4.7 Article

A False Data Injection Attack Detection Strategy for Unbalanced Distribution Networks State Estimation

期刊

IEEE TRANSACTIONS ON SMART GRID
卷 14, 期 5, 页码 3992-4006

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSG.2023.3235945

关键词

Unbalanced distribution networks; forecasting-aided state estimation (FASE); false data injection attack (FDIA); innovation vectors; cybersecurity

向作者/读者索取更多资源

This paper proposes a novel FDIA detection strategy for unbalanced distribution networks by introducing SE model and general imperfect FDIA to simulate attacking behavior. A square-root unscented Kalman filter (SR-UKF) based forecasting-aided SE (FASE) is proposed to achieve FDIA detection. By modifying the filtering step into a redundant linear regression form, random outliers can be effectively detected and suppressed by leveraging the projection statistics. A generalized likelihood ratio test (GLRT) is designed to detect FDIAs on consecutive snapshots by comparing the dynamic time warping (DTW) distance between two innovation sequences with the offline determined detection threshold. Extensive numerical simulations validate the feasibility of the proposed general imperfect FDIA and the effectiveness of the FDIA detection strategy.
With the advance in communication facilities and information technologies, the state estimation (SE) of distribution networks is subject to intensified cybersecurity threats caused by false data injection attacks (FDIAs). To address the issues, this paper proposes a novel FDIA detection strategy for unbalanced distribution networks. The SE model and corresponding general imperfect FDIA are introduced first to emulate the attacking behavior in practice. To achieve FDIA detection, we propose a square-root unscented Kalman filter (SR-UKF) based forecasting-aided SE (FASE) to generate estimation results. By modifying the filtering step of the proposed FASE into a redundant linear regression form, random outliers can be effectively detected and suppressed by leveraging the projection statistics (PS). Afterward, based on the acquired SE results, a generalized likelihood ratio test (GLRT) is designed to detect FDIAs on consecutive snapshots. In the GLRT, the dynamic time warping (DTW) distance between two innovation sequences is set as the test variable, which is compared with the offline determined detection threshold under a specific false alarm rate. The feasibility of the proposed general imperfect FDIA and the effectiveness of the proposed FDIA detection strategy are validated through extensive numerical simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据