4.6 Article

Enhanced Reduced-Order Extended State Observer for Motion Control of Differential Driven Mobile Robot

期刊

IEEE TRANSACTIONS ON CYBERNETICS
卷 53, 期 2, 页码 1299-1310

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCYB.2021.3123563

关键词

Observers; Mobile robots; Uncertainty; Motion control; Tracking; Numerical models; Steady-state; Differential driven mobile robot (DDMR); enhanced reduced-order extended state observer (ERESO); external disturbances; uncertainties

向作者/读者索取更多资源

This paper proposes a control method based on an enhanced reduced-order extended state observer for precise motion control in mobile robot systems. The method reduces energy consumption by estimating unknown state error and negative disturbance and uses a simple state-feedback-feedforward controller to track the reference signal and compensate for negative disturbance.
Motion control is critical in mobile robot systems, which determines the reliability and accuracy of a robot. Due to model uncertainties and widespread external disturbances, a simple control strategy cannot match tracking accuracy with disturbance immunity, while a complex controller will consume excessive energy. For precise motion control with disturbance immunity and low energy consumption, a control method based on an enhanced reduced-order extended state observer (ERESOBC) is proposed to control the motor-wheels dynamic model of a differential driven mobile robot (DDMR). In this method, only unknown state error and negative disturbance are estimated by the enhanced reduced-order extended state observer (ERESO), which reduces the required energy of the observer. In addition, a simple state-feedback-feedforward controller is used to track the reference signal and compensate for negative disturbance. Through numerical simulation and application example, the tracking performance and disturbance rejection performance of DDMR are compared with the traditional control method based on enhanced extended state observer (EESOBC), and the results show the superiority of the ERESOBC method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据