4.7 Article

The effects of multiwalled carbon nanotubes and Bacillus subtilis treatments on the salt tolerance of maize seedlings

期刊

FRONTIERS IN PLANT SCIENCE
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2022.1093529

关键词

antioxidant enzyme; ionic balance; maize growth; osmolytes; salt stress

向作者/读者索取更多资源

The study found that multiwalled carbon nanotubes (MWCNTs) can improve plant stress resistance, especially when applied at a concentration of 20 mg/L. However, high concentrations of MWCNTs can weaken this effect. It was also observed that the combined application of MWCNTs and the growth-promoting rhizobacterium B. subtilis has a synergistic effect on plant salt tolerance and reduces the oxidative stress caused by MWCNTs.
Nanomaterials, including multiwalled carbon nanotubes (MWCNTs), have been recently applied in agriculture to improve stress resistance, leading to contradictory findings for antioxidant responses and mineral nutrient uptake. A pot experiment involving maize in low-salinity sandy loam soils was conducted with the application of different concentrations (0, 20, 50 mg/L) of MWCNTs and the growth-promoting rhizobacterium Bacillus subtilis (B. subtilis). The dose-dependent effects of MWCNTs were confirmed: 20 mg/L MWCNTs significantly promoted the accumulation of osmolytes in maize, particularly K+ in the leaves and roots, increased the leaf indoleacetic acid content, decreased the leaf abscisic acid content; but the above-mentioned promoting effects decreased significantly in 50 mg/L MWCNTs-treated plants. We observed a synergistic effect of the combined application of MWCNTs and B. subtilis on plant salt tolerance. The increased lipid peroxidation and antioxidant-like proline, peroxidase (POD), and catalase (CAT) activities suggested that MWCNTs induced oxidative stress in maize growing in low-salinity soils. B. subtilis reduced the oxidative stress caused by MWCNTs, as indicated by a lower content of malondialdehyde (MDA). The MWCNTs significantly increased the leaf Na+ content and leaf Na+/K+ ratio; however, when applied in combination with B. subtilis, the leaf Na+/K+ ratio decreased sharply to 69% and 44%, respectively, compared to those of the control (CK) group, the contents of which were partially regulated by abscisic acid and nitrate, according to the results of the structural equation model (SEM). Overall, the increased osmolytes and well-regulated Na+/K+ balance and transport in plants after the combined application of MWCNTs and B. subtilis reveal great potential for their use in combating abiotic stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据