4.7 Article

Integrated model for genomic prediction under additive and non-additive genetic architecture

期刊

FRONTIERS IN PLANT SCIENCE
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2022.1027558

关键词

GBLUP; GEBVs; k-RCV; nonparametric; parametric; SVM; RCV

资金

  1. ICAR

向作者/读者索取更多资源

Genomic selection procedures are useful for estimating breeding values and phenotypic prediction. Parametric methods are effective for additive genetic architecture, while nonparametric methods fall short in capturing additive effects. This study aims to select and integrate models that can handle both additive and non-additive effects simultaneously.
Using data from genome-wide molecular markers, genomic selection procedures have proved useful for estimating breeding values and phenotypic prediction. The link between an individual genotype and phenotype has been modelled using a number of parametric methods to estimate individual breeding value. It has been observed that parametric methods perform satisfactorily only when the system under study has additive genetic architecture. To capture non-additive (dominance and epistasis) effects, nonparametric approaches have also been developed; however, they typically fall short of capturing additive effects. The idea behind this study is to select the most appropriate model from each parametric and nonparametric category and build an integrated model that can incorporate the best features of both models. It was observed from the results of the current study that GBLUP performed admirably under additive architecture, while SVM's performance in non-additive architecture was found to be encouraging. A robust model for genomic prediction has been developed in light of these findings, which can handle both additive and epistatic effects simultaneously by minimizing their error variance. The developed integrated model has been assessed using standard evaluation measures like predictive ability and error variance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据