4.7 Article

Regulatory mechanism of a heat-activated retrotransposon by DDR complex in Arabidopsis thaliana

期刊

FRONTIERS IN PLANT SCIENCE
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2022.1048957

关键词

epigenetics; transposons; environmental stress; Arabidopsis thaliana; ONSEN

向作者/读者索取更多资源

The DDR complex plays an essential role in regulating the activity of the retrotransposon ONSEN in Arabidopsis. Loss of any component of the DDR complex increases ONSEN transcript levels and leads to transgenerational transposition under heat stress. The components of the DDR complex, DRD1, DMS3, and RDM1, independently suppress ONSEN transcription and transposition. The duration of heat stress also affects ONSEN activity.
The RNA-directed DNA methylation (RdDM) pathway plays an essential role in the transposon silencing mechanism; the DDR complex, consisting of DRD1, DMS3, and RDM1, is an essential component of the RdDM pathway. ONSEN, identified in Arabidopsis, is a retrotransposon activated by heat stress at 37 degrees C; however, studies on the regulation of ONSEN are limited. In this study, we analyzed the regulation of ONSEN activity by the DDR complex in Arabidopsis. We elucidated that loss of any component of the DDR complex increased ONSEN transcript levels. Transgenerational transposition of ONSEN was observed in the DDR-complex mutants treated with heat stress for 48 h. Furthermore, the DDR complex components DRD1, DMS3, and RDM1 played independent roles in suppressing ONSEN transcription and transposition. Moreover, we found that the duration of heat stress affects ONSEN activity. Therefore, the results of this study provide new insights into the retrotransposon regulatory mechanisms of the DDR complex in the RdDM pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据