4.8 Article

Inhibition of the proton-activated chloride channel PAC by PIP2

期刊

ELIFE
卷 12, 期 -, 页码 -

出版社

eLIFE SCIENCES PUBL LTD
DOI: 10.7554/eLife.83935

关键词

chloride channel; PIP2; inhibition; Human

类别

向作者/读者索取更多资源

The PAC channel, encoded by PACC1 (TMEM206), is a pH-sensing ion channel that regulates endosomal acidification and macropinosome shrinkage. This study reveals that phosphatidylinositol (4,5)-bisphosphate (PIP2) inhibits PAC channel activity by stabilizing the channel in a desensitized-like conformation. The structure of PAC with PIP2 suggests a new pharmacological strategy for targeting this channel.
Proton-activated chloride (PAC) channel is a ubiquitously expressed pH-sensing ion channel, encoded by PACC1 (TMEM206). PAC regulates endosomal acidification and macropinosome shrinkage by releasing chloride from the organelle lumens. It is also found at the cell surface, where it is activated under pathological conditions related to acidosis and contributes to acid-induced cell death. However, the pharmacology of the PAC channel is poorly understood. Here, we report that phosphatidylinositol (4,5)-bisphosphate (PIP2) potently inhibits PAC channel activity. We solved the cryo-electron microscopy structure of PAC with PIP2 at pH 4.0 and identified its putative binding site, which, surprisingly, locates on the extracellular side of the transmembrane domain (TMD). While the overall conformation resembles the previously resolved PAC structure in the desensitized state, the TMD undergoes remodeling upon PIP2-binding. Structural and electrophysiological analyses suggest that PIP2 inhibits the PAC channel by stabilizing the channel in a desensitized-like conformation. Our findings identify PIP2 as a new pharmacological tool for the PAC channel and lay the foundation for future drug discovery targeting this channel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据