4.8 Article

Thymic macrophages consist of two populations with distinct localization and origin

期刊

ELIFE
卷 11, 期 -, 页码 -

出版社

eLIFE SCIENCES PUBL LTD
DOI: 10.7554/eLife.75148

关键词

thymus; macrophages; ontology; diversity; transcriptional profile; cell proliferation; Mouse

类别

资金

  1. Ministry of Science and Technology, Taiwan [107-2320-B-010-016-MY3]

向作者/读者索取更多资源

Tissue-resident macrophages in the thymus play a crucial role in organ homeostasis and engulfing apoptotic cells. This study characterized the phenotype, origin, and diversity of these macrophages, revealing two distinct populations with different origins and aging effects.
Tissue-resident macrophages are essential to protect from pathogen invasion and maintain organ homeostasis. The ability of thymic macrophages to engulf apoptotic thymocytes is well appreciated, but little is known about their ontogeny, maintenance, and diversity. Here, we characterized the surface phenotype and transcriptional profile of these cells and defined their expression signature. Thymic macrophages were most closely related to spleen red pulp macrophages and Kupffer cells and shared the expression of the transcription factor (TF) SpiC with these cells. Single-cell RNA sequencing (scRNA-Seq) showed that the macrophages in the adult thymus are composed of two populations distinguished by the expression of Timd4 and Cx3cr1. Remarkably, Timd4(+) cells were located in the cortex, while Cx3cr1(+) macrophages were restricted to the medulla and the cortico-medullary junction. Using shield chimeras, transplantation of embryonic thymuses, and genetic fate mapping, we found that the two populations have distinct origins. Timd4(+) thymic macrophages are of embryonic origin, while Cx3cr1(+) macrophages are derived from adult hematopoietic stem cells. Aging has a profound effect on the macrophages in the thymus. Timd4(+) cells underwent gradual attrition, while Cx3cr1(+) cells slowly accumulated with age and, in older mice, were the dominant macrophage population in the thymus. Altogether, our work defines the phenotype, origin, and diversity of thymic macrophages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据