4.6 Article

Highly Efficient Sum-Frequency Generation in Niobium Oxydichloride NbOCl2 Nanosheets

期刊

ADVANCED OPTICAL MATERIALS
卷 11, 期 7, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.202202833

关键词

2D materials; cross-correlation; ferroelectricity; optical nonlinearity; second-harmonic generation; sum-frequency generation

向作者/读者索取更多资源

Parametric infrared upconversion is a nonlinear optical process that converts low-frequency IR photons into high-frequency ultraviolet/visible photons. It is of great importance for various applications, such as security, material science, and healthcare. However, the upconversion efficiency for nanometer-scale materials is typically very low due to limited depth of excitation fields.
Parametric infrared (IR) upconversion is a process in which low-frequency IR photons are upconverted into high-frequency ultraviolet/visible photons through a nonlinear optical process. It is of paramount importance for a wide range of security, material science, and healthcare applications. However, in general, the efficiencies of upconversion processes are typically extremely low for nanometer-scale materials due to the short penetration depth of the excitation fields. Here, parametric IR upconversion processes, including frequency doubling and sum-frequency generation, are studied in layered van der Waals NbOCl2. An upconversion efficiency of up to 0.004% is attained for the NbOCl2 nanosheets, orders of magnitude higher than previously reported values for nonlinear layered materials. The upconverted signal is sensitive to layer numbers, crystal orientation, excitation wavelength, and temperature, and it can be utilized as an optical cross-correlator for ultrashort pulse characterization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据