4.6 Article

Efficient Cocatalyst-Free Piezo-Photocatalytic Hydrogen Evolution of Defective BaTiO3-X Nanoparticles from Seawater

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.2c06573

关键词

piezo-photocatalyisis; seawater splitting; BaTiO3; hydrogen evolution reaction; defect chemistry

向作者/读者索取更多资源

This study demonstrates the potential of using defective BaTiO3-x nanoparticles for piezo-photocatalysis of seawater, showing a promising solution to the limitations of hydrogen production such as the need for purified water and external power. The material's piezoelectric activity was enhanced through a straightforward annealing process, leading to stable piezoelectric tetragonal domains. Experimental techniques revealed the effects of reduction on the energy band structure, confirming the significant piezoelectric effect and presence of self-polarization. Hydrogen evolution was characterized using different water sources, and the results showed a substantial hydrogen evolution rate for both deionized and natural seawater. This work provides new perspectives for large-scale green H2 production using readily available piezoelectric materials with abundant natural resources.
Hydrogen is a promising fossil-fuel alternative fuel owing to its environmentally neutral emissions and high energy density. However, the need for purified water and external power are critical hindrances to the implementation of hydrogen production. The present work demonstrates the potential to overcome these shortcomings through piezo-photocatalysis of seawater using defective BaTiO3-x (BTO) nanoparticles. This material was made piezoelectrically active by a straightforward annealing process under different atmospheres, including O2, N2, Ar, or H2, the latter of which caused Ti4+ -> Ti(4-x)+ multiple reductions and structural distortions that stabilize piezoelectric tetragonal domains. A suite of experimental techniques was employed to reveal the effects of reduction on the energy band structure. A substantial piezoelectric effect and the presence of self-polarization were confirmed by piezoresponse force microscopy, while simulation work clarified the role of vibrations on band bending deriving from the self-polarization. The hydrogen evolution through photocatalysis, piezocatalysis, and piezo-photocatalysis over the defective BaTiO3-x nanoparticles was characterized with deionized (DI) water, simulated seawater, and natural seawater. A promising HER with a rate of 132.4 mu mol/g/h was achieved using DI water through piezo-photocatalysis without a cocatalyst. In contrast, a substantial HER rate of 48.7 mu mol/g/h was obtained for natural seawater, despite the deleterious impact of dissolved ions. The present work offers new perspectives for large-scale green H2 production using abundant natural resources with a conventional piezoelectric material that is readily available but still affected by the ions dissolved in seawater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据