4.6 Article

Comprehensive CCM3 Mutational Analysis in Two Patients with Syndromic Cerebral Cavernous Malformation

期刊

TRANSLATIONAL STROKE RESEARCH
卷 -, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1007/s12975-023-01131-x

关键词

Cerebral cavernous malformation; Syndromic phenotype; PDCD10; CCM3; Frameshift mutation; Splicing mutation

向作者/读者索取更多资源

This study investigates the clinical and genetic characteristics of two CCM3 patients, showing early onset of symptoms and a high lesion burden. Through quantitative PCR and bioinformatics analysis, the study reveals the mechanism of PDCD10 gene mutations. These findings are important for accurate diagnosis, treatment, and understanding the pathogenesis of CCM3.
Cerebral cavernous malformation (CCM) is a vascular disease that affects the central nervous system, which familial form is due to autosomal dominant mutations in the genes KRIT1(CCM1), MGC4607(CCM2), and PDCD10(CCM3). Patients affected by the PDCD10 mutations usually have the onset of symptoms at an early age and a more aggressive phenotype. The aim of this study is to investigate the molecular mechanism involved with CCM3 disease pathogenesis. Herein, we report two typical cases of CCM3 phenotype and compare the clinical and neuroradiological findings with five patients with a familial form of KRIT1 or CCM2 mutations and six patients with a sporadic form. In addition, we evaluated the PDCD10 gene expression by qPCR and developed a bioinformatic pipeline to understand the structural changes of mutations. The two CCM3 patients had an early onset of symptoms and a high lesion burden. Furthermore, the sequencing showed that Patient 1 had a frameshift mutation in c.222delT; p.(Asn75Thrfs*14) that leads to lacking the last 124 C-terminal amino acids on its primary structure and Patient 2 had a variant on the splicing site region c.475-2A > G. The mRNA expression was fourfold lower in both patients with PDCD10 mutation. Using in silico analysis, we identify that the frameshift mutation transcript lacks the C-terminal FAT-homology domain compared to the wild-type PDCD10 and preserves the N-terminal dimerization domain. The two patients studied here allow estimating the potential impact of mutations in clinical interpretation as well as support to better understand the mechanism and pathogenesis of CCM3.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据