4.7 Article

Soil Erosion Satellite-Based Estimation in Cropland for Soil Conservation

期刊

REMOTE SENSING
卷 15, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/rs15010020

关键词

soil degradation; RUSLE; remote sensing; crop residue; bioenergy; sustainable land use

向作者/读者索取更多资源

This research presents a new approach to evaluate soil loss by water erosion in cropland using the RUSLE model and Synthetic Soil Image. By analyzing remote sensing data and satellite images, it predicts and assesses soil erosion and proposes conservation measures.
Intensive cropland expansion for an increasing population has driven soil degradation worldwide. Modeling how agroecosystems respond to variations in soil attributes, relief and crop management dynamics can guide soil conservation. This research presents a new approach to evaluate soil loss by water erosion in cropland using the RUSLE model and Synthetic Soil Image (spectroscopy technique), which uses time series remotely sensed environmental, agricultural and anthropic variables, in the southeast region of Sao Paulo State, Brazil. The availability of the open-access satellite images of Tropical Rainfall Measuring Mission (TRMM) and Landsat satellite images provided ten years of rainfall data and 35 years of exposed soil surface. The bare soil surface and agricultural land use were extracted, and the multi-temporal rainfall erosivity was assessed. We predict soil maps' attributes (texture and organic matter) through innovative soil spectroscopy techniques to assess the soil erodibility and soil loss tolerance. The erosivity, erodibility, and topography obtained by the Earth observations were adopted to estimate soil erosion in four scenarios of sugarcane (Saccharum spp.) residue coverage (0%, 50%, 75%, and 100%) in five years of the sugarcane cycle: the first year of sugarcane harvest and four subsequent harvesting years from 2013 to 2017. Soil loss tolerance means 4.3 Mg ha(-1) exceeds the minimum rate in 40% of the region, resulting in a total soil loss of similar to 6 million Mg yr(-1) under total coverage management (7 Mg ha(-1)). Our findings suggest that sugarcane straw production has not been sufficient to protect the soil loss against water erosion. Thus, straw removal is unfeasible unless alternative conservation practices are adopted, such as minimum soil tillage, contour lines, terracing and other techniques that favor increases in organic matter content and soil flocculating cations. This research also identifies a spatiotemporal erosion-prone area that requests an immediately sustainable land development guide to restore and rehabilitate the vulnerable ecosystem service. The high-resolution spatially distribution method provided can identify soil degradation-prone areas and the cropland expansion frequency. This information may guide farms and the policymakers for a better request of conservation practices according to site-specific management variation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据