4.7 Article

An Integrated InSAR and GNSS Approach to Monitor Land Subsidence in the Po River Delta (Italy)

期刊

REMOTE SENSING
卷 14, 期 21, 页码 -

出版社

MDPI
DOI: 10.3390/rs14215578

关键词

InSAR; GNSS; integration; monitoring system; land subsidence; Po River Delta

资金

  1. Department of Civil, Environmental and Architectural Engineering of the Padova University (Italy)
  2. Department of Geosciences of the Padua University [FLOR_SID17_01]

向作者/读者索取更多资源

Land subsidence poses a serious threat to many areas around the world, and combining GNSS and InSAR techniques can provide more comprehensive and detailed information for monitoring. In this study, the proposed approach was successfully applied in the Po River Delta in Italy, extracting high-resolution deformation maps and revealing high land subsidence rates along the coastal area.
Land subsidence affects many areas of the world, posing a serious threat to human structures and infrastructures. It can be effectively monitored using ground-based and remote sensing techniques, such as the Global Navigation Satellite System (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). GNSS provides high precision measurements, but in a limited number of points, and is time-consuming, while InSAR allows one to obtain a very large number of measurement points, but only in areas characterized by a high and constant reflectivity of the signal. The aim of this work is to propose an approach to combine the two techniques, overcoming the limits of each of them. The approach was applied in the Po River Delta (PRD), an area located in Northern Italy and historically affected by land subsidence. Ground-based GNSS data from three continuous stations (CGNSS) and 46 non-permanent sites (NPS) measured in 2016, 2018, and 2020, and Sentinel-1 and COSMO-SkyMed SAR data acquired from 2016 to 2020, were considered. In the first phase of the method, InSAR processing was calibrated and verified through CGNSS measurements; subsequently, the calibrated interferometric data were used to validate the GNSS measurements of the NPS. In the second phase, the datasets were integrated to provide an efficient monitoring system, extracting high-resolution deformation maps. The results showed a good agreement between the different sources of data, a high correlation between the displacement rate and the age of the emerged surfaces composed of unconsolidated fine sediments, and high land subsidence rates along the coastal area (up to 16-18 mm/year), where the most recent deposits outcrop. The proposed approach makes it possible to overcome the disadvantages of each technique by providing more complete and detailed information for a better understanding of the ongoing phenomenon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据