4.7 Article

New Hybrid PVC/PVP Polymer Blend Modified with Er2O3 Nanoparticles for Optoelectronic Applications

期刊

POLYMERS
卷 15, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/polym15030684

关键词

polymer blend; Er2O3 nanoparticles; activation energy; nonlinear refractive index

向作者/读者索取更多资源

This paper presents the preparation and characterization of PVC/PVP polymer blend hybrid nanocomposites doped with Er2O3 nanoparticles for optoelectronic applications. The results showed that the addition of Er2O3 nanoparticles had a significant impact on the structural and optical properties of the polymer blend. The polymer nanocomposites exhibited improved dispersion energy, nonlinear refractive index, and optical absorption with the increase in Er2O3 concentration.
Polymer blend hybrid nanocomposites are of great importance for future optoelectronic applications. This paper presents the preparation of new polymer blend hybrid nanocomposites based on PVC/PVP modified with Er2O3 nanoparticles. A low-cost solution casting method has been used to prepare the polymer nanocomposites at 0.0, 0.1, 0.3 and 0.6 wt% of Er2O3. X-ray diffraction (XRD), Fourier transform infrared (FTIR), Raman spectroscopy, and environmental scanning electron microscopy (ESEM) measurements have all been used to examine the impact of a varying wt% of Er2O3 on the structural and optical characteristics of PVP/PVC polymer blends. The PVC/PVP polymer blend and Er2O3 nanoparticles showed a strong interaction, which was validated by XRD, FTIR, and Raman spectrum investigations. The SEM micrographs showed a remarkable complexation among the components of the polymer nanocomposites. The activation energies for thermal decomposition of PVC/PVP doped with different Er2O3 concentrations were less than that of the pure polymer film. The linear and nonlinear refractive indexes, dispersion energy, optical susceptibility and the energy gap values were found to be Er2O3 concentration-dependent. With an increase in Er2O3 concentration to 0.1 and 0.3 wt%, the dispersion energy and nonlinear refractive index improved, and thereafter decreased when the concentration was further increased to 0.6For the film doped with 0.1 wt% Er2O3, the optical band gap (E-opt) of the composite film enhanced by about 13%. The optical absorption measurements revealed clear improvements with the addition of erbium oxide. Higher refractive index values of PVC/PVP/Er2O3 films qualify the polymer blend as a cladding for electro-optic modulators. Our results indicated that the PVC/PVP/Er2O3 polymer films could be suitable for optoelectronic space applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据