4.7 Article

Degradation of Bio-Based and Biodegradable Plastic and Its Contribution to Soil Organic Carbon Stock

期刊

POLYMERS
卷 15, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/polym15030660

关键词

PBSA; soil respiration; bio-based and biodegradable plastic; isotopic fractionation; source partitioning; priming effect

向作者/读者索取更多资源

Expanding the use of environmentally friendly materials to protect the environment is important for maintaining a sustainable ecological balance. In this study, the decomposition process of PBSA and its impact on carbon stored in soil were investigated using stable isotope technique.
Expanding the use of environmentally friendly materials to protect the environment is one of the key factors in maintaining a sustainable ecological balance. Poly(butylene succinate-co-adipate) (PBSA) is considered among the most promising bio-based and biodegradable plastics for the future with a high number of applications in soil and agriculture. Therefore, the decomposition process of PBSA and its consequences for the carbon stored in soil require careful monitoring. For the first time, the stable isotope technique was applied in the current study to partitioning plastic- and soil-originated C in the CO2 released during 80 days of PBSA decomposition in a Haplic Chernozem soil as dependent on nitrogen availability. The decomposition of the plastic was accompanied by the C loss from soil organic matter (SOM) through priming, which in turn was dependent on added N. Nitrogen facilitated PBSA decomposition and reduced the priming effect during the first 6 weeks of the experiment. During the 80 days of plastic decomposition, 30% and 49% of the released CO2 were PBSA-derived, while the amount of SOM-derived CO2 exceeded the corresponding controls by 100.2 and 132.3% in PBSA-amended soil without and with N fertilization, respectively. Finally, only 4.1% and 5.4% of the PBSA added into the soil was mineralized to CO2, in the treatments without and with N amendment, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据