4.7 Article

Novel Polymeric Nanomaterial Based on Poly(Hydroxyethyl Methacrylate-Methacryloylamidophenylalanine) for Hypertension Treatment: Properties and Drug Release Characteristics

期刊

POLYMERS
卷 14, 期 22, 页码 -

出版社

MDPI
DOI: 10.3390/polym14225038

关键词

polymeric nanomaterials; nanopolymer; drug release; amlodipine; hypertension

资金

  1. Scientific Research Deanship at the University of Ha'il-Saudi Arabia [MDR-22019]

向作者/读者索取更多资源

In this study, a novel polymeric nanomaterial was synthesized, characterized, and demonstrated to have potential use in hypertension treatment. The synthesized nanomaterial showed promising properties for drug delivery, including high adsorption capacity and controlled release.
In this study, a novel polymeric nanomaterial was synthesized and characterized, and it its potential usability in hypertension treatment was demonstrated. For these purposes, a poly(hydroxyethyl methacrylate-methacryloylamidophenylalanine)-based polymeric nanomaterial (p(HEMPA)) was synthesized using a mini-emulsion polymerization technique. The nanomaterials were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and zeta size analysis. The synthesized p(HEMPA) nanomaterial had a diameter of about 113 nm. Amlodipine-binding studies were optimized by changing the reaction conditions. Under optimum conditions, amlodipine's maximum adsorption value (Qmax) of the p(HEMPA) nanopolymer was found to be 145.8 mg/g. In vitro controlled drug release rates of amlodipine, bound to the nanopolymer at the optimum conditions, were studied with the dialysis method in a simulated gastrointestinal system with pH values of 1.2, 6.8 and 7.4. It was found that 99.5% of amlodipine loaded on the nanomaterial was released at pH 7.4 and 72 h. Even after 72 h, no difference was observed in the release of AML. It can be said that the synthesized nanomaterial is suitable for oral amlodipine release. In conclusion, the synthesized nanomaterial was studied for the first time in the literature as a drug delivery system for use in the treatment of hypertension. In addition, AML-p(HEMPA) nanomaterials may enable less frequent drug uptake, have higher bioavailability, and allow for prolonged release with minimal side effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据