4.6 Article

Sirt3 prevents maternal obesity-associated oxidative stress and meiotic defects in mouse oocytes

期刊

CELL CYCLE
卷 14, 期 18, 页码 2959-2968

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15384101.2015.1026517

关键词

obese; oocyte; oxidative stress; sirtuin; SOD

资金

  1. National Key Scientific Research Projects [2014CB943200]
  2. National Natural Science Foundation of China [31301181]
  3. Natural Science Foundation of the Jiangsu Higher Education Institutions [13KJA310001]
  4. Jiangsu Entrepreneurship and Innovation Award
  5. [GM100756]

向作者/读者索取更多资源

Maternal obese environment has been reported to induce oxidative stress and meiotic defects in oocytes, however the underlying molecular mechanism remains unclear. Here, using mice fed a high fat diet (HFD) as an obesity model, we first detected enhanced reactive oxygen species (ROS) content and reduced Sirt3 expression in HFD oocytes. We further observed that specific depletion of Sirt3 in control oocytes elevates ROS levels while Sirt3 overexpression attenuates ROS production in HFD oocytes, with significant suppression of spindle disorganization and chromosome misalignment phenotypes that have been reported in the obesity model. Candidate screening revealed that the acetylation status of lysine 68 on superoxide dismutase (SOD2K68) is dependent on Sirt3 deacetylase activity in oocytes, and acetylation-mimetic mutant SOD2K68Q results in almost threefold increase in intracellular ROS. Moreover, we found that acetylation levels of SOD2K68 are increased by approximate to 80% in HFD oocytes and importantly, that the non-acetylatable-mimetic mutant SOD2K68R is capable of partially rescuing their deficient phenotypes. Together, our data identify Sirt3 as an important player in modulating ROS homeostasis during oocyte development, and indicate that Sirt3-dependent deacetylation of SOD2 plays a protective role against oxidative stress and meiotic defects in oocytes under maternal obese conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据