4.7 Article

A Deep Convolutional Neural Network Model for Improving WRF Simulations

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNNLS.2021.3100902

关键词

Meteorology; Convolutional neural networks; Numerical models; Predictive models; Data models; Atmospheric modeling; Computational modeling; Bias correction; convolutional neural network (CNN); machine learning (ML); pressure; RH; temperature; weather simulation; wind speed

向作者/读者索取更多资源

This study investigates the use of a computationally efficient deep learning method, the convolutional neural network (CNN), to improve the simulation accuracy of the mesoscale Weather Research and Forecasting (WRF) model. The results show a noticeable improvement in WRF simulations at all station locations in South Korea.
Advancements in numerical weather prediction (NWP) models have accelerated, fostering a more comprehensive understanding of physical phenomena pertaining to the dynamics of weather and related computing resources. Despite these advancements, these models contain inherent biases due to parameterization of the physical processes and discretization of the differential equations that reduce simulation accuracy. In this work, we investigate the use of a computationally efficient deep learning (DL) method, the convolutional neural network (CNN), as a postprocessing technique that improves mesoscale Weather Research and Forecasting (WRF) one-day simulation (with a 1-h temporal resolution) outputs. Using the CNN architecture, we bias-correct several meteorological parameters calculated by the WRF model for all of 2018. We train the CNN model with a four-year history (2014-2017) to investigate the patterns in WRF biases and then reduce these biases in simulations for surface wind speed and direction, precipitation, relative humidity, surface pressure, dewpoint temperature, and surface temperature. The WRF data, with a spatial resolution of 27 km, cover South Korea. We obtain ground observations from the Korean Meteorological Administration station network for 93 weather station locations. The results indicate a noticeable improvement in WRF simulations in all station locations. The average of annual index of agreement for surface wind, precipitation, surface pressure, temperature, dewpoint temperature, and relative humidity of all stations is 0.85 (WRF:0.67), 0.62 (WRF:0.56), 0.91 (WRF:0.69), 0.99 (WRF:0.98), 0.98 (WRF:0.98), and 0.92 (WRF:0.87), respectively. While this study focuses on South Korea, the proposed approach can be applied for any measured weather parameters at any location.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据