4.8 Article

Specialized functions and sexual dimorphism explain the functional diversity of the myeloid populations during glioma progression

期刊

CELL REPORTS
卷 42, 期 1, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.celrep.2022.111971

关键词

-

向作者/读者索取更多资源

Malignant gliomas are aggressive brain tumors infiltrated by myeloid cells, including microglia and monocytes/macrophages, which support tumor progression. Using CITE-seq, we identified cell diversity and functionalities in murine gliomas. Glioma-activated microglia are major cytokine sources and BM-derived cells transition to tumor-supportive macrophages. We also found sex-dependent differences in myeloid cell programs and composition in murine and human glioblastomas.
Malignant gliomas are aggressive, hard-to-treat brain tumors. Their tumor microenvironment is massively infiltrated by myeloid cells, mostly brain-resident microglia, bone marrow (BM)-derived monocytes/macro-phages, and dendritic cells that support tumor progression. Single-cell omics studies significantly dissected immune cell heterogeneity, but dynamics and specific functions of individual subpopulations were poorly recognized. We use Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) to precisely dissect myeloid cell identities and functionalities in murine GL261 gliomas. We demonstrate that the diversity of myeloid cells infiltrating gliomas is dictated by cell type and cell state. Glioma-activated microglia are the major source of cytokines attracting other immune cells, whereas BM-derived cells show the monocyte-to-macrophage transition in the glioma microenvironment. This transition is coupled with a phenotypic switch from the IFN-related to antigen-presentation and tumor-supportive gene expression. Moreover, we found sex-dependent differences in transcriptional programs and composition of myeloid cells in murine and human glioblastomas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据