4.8 Article

Renal control of life-threatening malarial anemia

期刊

CELL REPORTS
卷 42, 期 2, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.celrep.2023.112057

关键词

-

向作者/读者索取更多资源

Iron recycling is important in preventing anemia, and its role in preventing anemia during infection is unclear. In severe Plasmodium falciparum malaria, acute kidney injury (AKI) is associated with life-threatening anemia. A study using a rodent model shows that renal proximal tubule epithelial cells (RPTECs) have the ability to store and recycle iron during P. chabaudi chabaudi (Pcc) infection, preventing the onset of life-threatening malarial anemia.
Iron recycling prevents the development of anemia under homeostatic conditions. Whether iron recycling was co-opted as a defense strategy to prevent the development of anemia in response to infection is unclear. We find that in severe Plasmodium falciparum malaria, the onset of life-threatening anemia is associated with acute kid-ney injury (AKI), irrespective of parasite load. Using a well-established experimental rodent model of malaria anemia, we identify a transcriptional response that endows renal proximal tubule epithelial cells (RPTECs) with the capacity to store and recycle iron during P. chabaudi chabaudi (Pcc) infection. This response encom-passes the induction of ferroportin 1/SLC40A1, which exports iron from RPTECs and counteracts AKI while supporting compensatory erythropoiesis and preventing the onset of life-threatening malarial anemia. Iron recycling by myeloid cells is dispensable to this protective response, suggesting that RPTECs provide an iron-recycling salvage pathway that prevents the pathogenesis of life-threatening malarial anemia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据