4.6 Article

Cardiac remodelling in a baboon model of intrauterine growth restriction mimics accelerated ageing

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 595, 期 4, 页码 1093-1110

出版社

WILEY
DOI: 10.1113/JP272908

关键词

cardiac function; developmental programming; intrauterine growth restriction; magnetic resonance imaging; nonhuman primate

资金

  1. National Institutes of Health [5P01HD021350, 5R24OD011183, 5K25DK089012, 1R25EB016631]
  2. Office of Research Infrastructure Programs/Office of the Director [OD P51 OD011133]
  3. EU [279281]

向作者/读者索取更多资源

Extensive rodent studies have shown that reduced perinatal nutrition programmes chronic cardiovascular disease. To enable translation to humans, we developed baboon offspring cohorts from mothers fed ad libitum (control) or 70% of the control ad libitum diet in pregnancy and lactation, which were growth restricted at birth. We hypothesized that intrauterine growth restriction (IUGR) offspring hearts would show impaired function and a premature ageing phenotype. We studied IUGR baboons (8 male, 8 female, 5.7years), control offspring (8 male, 8 female, 5.6 years - human equivalent approximately 25years), and normal elderly (OLD) baboons (6 male, 6 female, mean 15.9years). Left ventricular (LV) morphology and systolic and diastolic function were evaluated with cardiac MRI and normalized to body surface area. Two-way ANOVA by group and sex (with P<0.05) indicated ejection fraction, 3D sphericity indices, cardiac index, normalized systolic volume, normalized LV wall thickness, and average filling rate differed by group. Group and sex differences were found for normalized LV wall thickening and normalized myocardial mass, without interactions. Normalized peak LV filling rate and diastolic sphericity index were not correlated in control but strongly correlated in OLD and IUGR baboons. IUGR programming in baboons produces myocardial remodelling, reduces systolic and diastolic function, and results in the emergence of a premature ageing phenotype in the heart. To our knowledge, this is the first demonstration of the specific characteristics of cardiac programming and early life functional decline with ageing in an IUGR non-human primate model. Further studies across the life span will determine progression of cardiac dysfunction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据