4.7 Article

Arc discharge rapid synthesis of engineered copper oxides nano shapes with potent antibacterial activity against multi-drug resistant bacteria

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-24514-w

关键词

-

资金

  1. Science, Technology & Innovation Funding Authority (STDF)
  2. Egyptian Knowledge Bank (EKB)

向作者/读者索取更多资源

Nano metals have received significant attention recently. This study focuses on the preparation of different forms of copper oxide (CuO) using the Arc discharge process. The results show that CuO nano wires (CuO-NWs) exhibit potent antibacterial activity against multi-drug resistant Acinetobacter baumannii strains.
Nowadays Nano metals have received an eminent compromise of attention. Even though different nanostructure of same metal maybe gives different results in wide range applications. Copper oxide (CuO-NPs) and Copper Nano wires (CuO-NWs) were prepared in controlled size via the alternating current Arc discharge process. Deionized water and argon gas were the chosen dielectric medium during the process to obtain 2 different forms of copper oxides. By changing the dielectric material from deionized water to argon gas the shape of CuO nanoparticles changed from spherical (CuO-NPs) to wires (CuO-NWS). The yield prepared depicted the purity of the prepared CuO, and their diameters were about 10 +/- 5 nm and 30 +/- 3 nm for CuO-NWs and CuO-NPs respectively. In vitro cytotoxic effect of the prepared CuO-NWs & CuO-NPs using human normal lung fibroblast cell line (WI-38 cells) revealed that CuO-NWs & CuO-NPs CC50 values were 458.8 and 155.6 mu g/mL respectively. Both yields showed potent antibacterial activity against different multi-drug resistant Acinetobacter baumannii strains. A complete eradication of the bacterial growth was noticed after 4 Hrs incubation with CuO-NWs. Moreover, CuO-NWs showed superior antibacterial activity (with minimum inhibitory concentration reached 1.8 mu g/mL) over CuO-NPs. The detailed antibacterial activity mechanism of CuO-NWs was further investigated; data proved the precipitation and adsorption of the nanoparticles on the bacterial cell surface leading to cell deformation with reactive oxygen species increment. The results explicated that the nanoparticles shape plays an essential role in the antibacterial activity. Rotational Arc discharge machine might be a promising tool to obtain various metal nanostructures with low cost and environmentally friendly with potent activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据