4.7 Article

Single-nuclei transcriptomics enable detection of somatic variants in patient brain tissue

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-27700-6

关键词

-

向作者/读者索取更多资源

Coupling single-cell genotype and transcriptomic data can help us understand the role of somatic variants in disease etiology, especially in neurological disorders like epilepsy. This study used single-cell RNA-sequencing data to validate the detection of known somatic variants, particularly when they are expressed near the end of a gene.
Somatic variants are a major cause of human disease, including neurological disorders like focal epilepsies, but can be challenging to study due to their mosaicism in bulk tissue biopsies. Coupling single-cell genotype and transcriptomic data has potential to provide insight into the role somatic variants play in disease etiology, such as by determining what cell types are affected or how the mutations affect gene expression. Here, we asked whether commonly used single-nucleus 3'- or 5'-RNA-sequencing assays can be used to derive single-nucleus genotype data for a priori known variants that are located near to either end of a transcript. To that end, we compared performance of commercially available single-nuclei 3'- and 5'- gene expression kits using resected brain samples from three pediatric patients with focal epilepsy. We quantified the ability to detect genetic variants in single-nucleus datasets depending on distance from the transcript end. Finally, we demonstrated the ability to identify affected cell types in a patient with a RHEB somatic variant causing an epilepsy-associated cortical malformation. Our results demonstrate that single-nuclei 3' or 5'-RNA-sequencing data can be used to identify known somatic variants in single-nuclei when they are expressed within proximity to a transcript end.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据