4.7 Article

CT-based data generation for foreign object detection on a single X-ray projection

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-29079-w

关键词

-

向作者/读者索取更多资源

X-ray imaging is commonly used for quality control in industry, but has limitations in detecting internal defects. We propose a computationally efficient approach for creating artificial single-view X-ray data based on a few physically CT-scanned objects. Our results show that applying this method to a single CT-scanned object achieves accuracy comparable to scanning multiple real-world samples.
Although X-ray imaging is used routinely in industry for high-throughput product quality control, its capability to detect internal defects has strong limitations. The main challenge stems from the superposition of multiple object features within a single X-ray view. Deep Convolutional neural networks can be trained by annotated datasets of X-ray images to detect foreign objects in real-time. However, this approach depends heavily on the availability of a large amount of data, strongly hampering the viability of industrial use with high variability between batches of products. We present a computationally efficient, CT-based approach for creating artificial single-view X-ray data based on just a few physically CT-scanned objects. By algorithmically modifying the CT-volume, a large variety of training examples is obtained. Our results show that applying the generative model to a single CT-scanned object results in image analysis accuracy that would otherwise be achieved with scans of tens of real-world samples. Our methodology leads to a strong reduction in training data needed, improved coverage of the combinations of base and foreign objects, and extensive generalizability to additional features. Once trained on just a single CT-scanned object, the resulting deep neural network can detect foreign objects in real-time with high accuracy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据