4.7 Article

Modeling thermophysical properties of glasses

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-27747-5

关键词

-

向作者/读者索取更多资源

Metal oxide glasses are crucial in various industries due to their adjustable properties. However, there is a lack of accurate and efficient modeling tools to predict their thermomechanical properties. This article introduces a novel multi-scale modeling framework based on Monte Carlo simulation and cubic equation of state. The framework characterizes the glass transition and softening temperatures and incorporates a new moving boundary equation of state that considers structure and 'soft' repulsion. The modeling capabilities are demonstrated through comparison with experimental data. Additionally, this work provides a rigorous approach to estimate thermophysical properties for guiding experimental work.
Metal oxide glasses are important in various industries because their properties can be tailored to meet application-specific requirements. However, there are few rigorous modeling tools for predicting thermomechanical properties of these materials with acceptable accuracy and speed, yet these properties can play a critical role in material design. In this article, a general multi-scale modeling framework based on Monte Carlo simulation and a cubic equation of state for predicting thermomechanical properties is presented. There are two novel and fundamental aspects of this work: (1) characterization of glass transition and softening temperatures as adjacent saddle points on the heat capacity versus temperature curve, and (2) a new moving boundary equation of state that accounts for structure and 'soft' repulsion. In addition, modeling capabilities are demonstrated by comparing thermomechanical properties of a pure B2O3 glass and PbO-B2O3 glass predicted by the equation of state to experimental data. Finally, this work provides a rigorous approach to estimating thermophysical properties for the purpose of guiding experimental work directed at tailoring thermomechanical properties of glasses to fit applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据