4.7 Article

The fabrication and growth mechanism of AlCrFeCoNiCu0.5 HEA thin films by substrate-biased cathodic arc deposition

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-26232-9

关键词

-

向作者/读者索取更多资源

Detailed characterization of AlCrFeCoNiCu0.5 thin films was conducted using techniques such as high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The study revealed the key mechanism of film growth, as well as elemental segregation and surface morphology changes.
AlCrFeCoNiCu0.5 thin films were fabricated by cathodic arc deposition under different substrate biases. Detailed characterization of the chemistry and structure of the film, from the substrate interface to the film surface, was achieved by combining high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. Computer simulations using the transport of ions in matter model were applied to understand the ion surface interactions that revealed the key mechanism of the film growth. The final compositions of the films are significantly different from that of the target used. A trend of elemental segregation, which was more pronounced with higher ion kinetic energy, was observed. The XPS results reveal the formation of Al2O3 and Cr2O3 on the thin film surface. The grain size is shown to increase with the increasing of the ion kinetic energy. The growth of equiaxed grains contributed to the formation of a flat surface with a relatively low surface roughness as shown by atomic force microscopy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据