4.7 Article

Climate change threatens unique evolutionary diversity in Australian kelp refugia

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-28301-z

关键词

-

向作者/读者索取更多资源

Climate change has led to the decline and loss of kelp forests globally, affecting their ecological and economic values. Kelp populations at the equatorward range edges are particularly vulnerable to warming, which may result in the loss of unique adaptive or evolutionary genetic diversity. Through genetic analysis, we identified haplotype diversity in the dominant Laminarian kelp Ecklonia radiata in the south-western Pacific, a region experiencing high warming rates. We discovered a genetically diverse deep-water range-edge population off Moreton Island, Queensland, which serves as a refuge during climatic changes and requires urgent conservation efforts.
Climate change has driven contemporary decline and loss of kelp forests globally with an accompanying loss of their ecological and economic values. Kelp populations at equatorward-range edges are particularly vulnerable to climate change as these locations are undergoing warming at or beyond thermal tolerance thresholds. Concerningly, these range-edge populations may contain unique adaptive or evolutionary genetic diversity that is vulnerable to warming. We explore haplotype diversity by generating a Templeton-Crandall-Sing (TCS) network analysis of 119 Cytochrome C Oxidase (COI) sequences among four major population groupings for extant and putatively extinct populations only known from herbarium specimens of the dominant Laminarian kelp Ecklonia radiata in the south-western Pacific, a region warming at 2-4 times the global average. Six haplotypes occurred across the region with one being widespread across most populations. Three unique haplotypes were found in a deep-water range-edge population off Moreton Island, Queensland, which likely represents both a contemporary and historic refuge during periods of climatic change. Hindcasting E. radiata cover estimates using extant data, we reveal that this region likely supported the highest kelp cover in eastern Australia during the last glacial maximum. The equatorward range edge, deep-water kelp populations off Moreton Island represent a genetically diverse evolutionary refuge that is currently threatened by warming and requires prompt ex-situ conservation measures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据