4.7 Article

Energy-efficient distributed heterogeneous re-entrant hybrid flow shop scheduling problem with sequence dependent setup times considering factory eligibility constraints

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-23144-6

关键词

-

资金

  1. Humanities and Social Science research project of Henan Province [2023-ZZJH-074]
  2. Doctoral research startup fund project of Nanyang Institute of Technology [NGBJ-2022-50]

向作者/读者索取更多资源

This study considers the distributed heterogeneous re-entrant hybrid flow shop scheduling problem with sequence dependent setup times, considering factory eligibility constraints under time of use price. It proposes a multi-objective Artificial Bee Colony Algorithm to optimize both the makespan and total energy consumption. The algorithm demonstrates its effectiveness in solving the scheduling problem through extensive experiments.
In the face of energy crisis, manufacturers pay more and more attention to energy-saving scheduling. In the paper, we consider the distributed heterogeneous re-entrant hybrid flow shop scheduling problem (DHRHFSP) with sequence dependent setup times (DHRHFSP-SDST) considering factory eligibility constraints under time of use (TOU) price, which means that each job can only be assigned to its available set of factories and all factories have different number of machines and processing capacity, and so on. To deal with DHRHFSP-SDST, a multi-objective Artificial Bee Colony Algorithm (MOABC) is proposed to optimize both the makespan and total energy consumption. For the MOABC, firstly, a hybrid initialization method is presented to initialize the population; then, due to the electricity price shows significant differences vary from periods under TOU price, the energy saving operator based on right-shift strategy is proposed to avoid processing jobs with the high electricity price without affecting the productivity; thirdly, based on the full consideration of distributed heterogeneous and factory eligibility, crossover and mutation operators, three neighborhood search operators and new food sources generation strategy are designed; lastly, extensive experiments demonstrate the effectiveness of the proposed algorithm on solving the DHRHFSP-SDST.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据