4.6 Article

Sex differences in response to miRNA-34a therapy in mouse models of cardiac disease: identification of sex-, disease- and treatment-regulated miRNAs

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 594, 期 20, 页码 5959-5974

出版社

WILEY
DOI: 10.1113/JP272512

关键词

-

资金

  1. National Health and Medical Research Council [586603, 586604, 1078985]
  2. Victorian Government's Operational Infrastructure Support Program
  3. Australian Research Council Future Fellowship [FT0001657]
  4. University of New South Wales Vice Chancellor Research Fellowship
  5. National Health and Medical Research Council of Australia [1078985] Funding Source: NHMRC

向作者/读者索取更多资源

MicroRNA (miRNA)-34a (miR-34a) is elevated in the diseased heart in mice and humans. Previous studies have shown that inhibiting miR-34a in male mice in settings of pathological cardiac hypertrophy or ischaemia protects the heart against progression to heart failure. Whether inhibition of miR-34a protects the female heart is unknown. Furthermore, the therapeutic potential of silencing miR-34a in settings of dilated cardiomyopathy (DCM) and atrial fibrillation (AF) has not been assessed previously. In the present study, we examined the effect of silencing miR-34a in males and females in (1) a model of moderate DCM and (2) a model of severe DCM with AF. The cardiac disease models were administered with a locked nucleic acid-modified oligonucleotide (LNA-antimiR-34a) at 6-7 weeks of age when the models display cardiac dysfunction and conduction abnormalities. Cardiac function and morphology were measured 6 weeks after treatment. In the present study, we show that inhibition of miR-34a provides more protection in the DCM model in females than males. Disease prevention in LNA-antimiR-34a treated DCM female mice was characterized by attenuated heart enlargement and lung congestion, lower expression of cardiac stress genes (B-type natriuretic peptide, collagen gene expression), less cardiac fibrosis and better cardiac function. There was no evidence of significant protection in the severe DCM and AF model in either sex. Sex-and treatment-dependent regulation of miRNAs was also identified in the diseased heart, and may explain the differential response of males and females. These studies highlight the importance of examining the impact of miRNA-based drugs in both sexes and under different disease conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据