4.7 Article

Mutation analysis of the WFS1 gene in a Chinese family with autosomal-dominant non-syndrome deafness

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-26850-3

关键词

-

向作者/读者索取更多资源

This study analyzed the pathogenic genes and mutations in a family with hereditary deafness. A novel mutation in the WFS1 gene was found and its impact on protein stability and function was predicted. Additionally, differentially expressed genes related to amino acid metabolism, signal transduction, and dephosphorylation were identified. This research expands the mutation spectrum of WFS1.
To analyse the pathogenic genes and mutations of a family with hereditary deafness. We recruited a three-generation family with NSHL. A detailed medical history inquiry and related examinations were performed. Next-generation sequencing (NGS) was used to confirm the gene mutation in the proband, and Sanger sequencing was used for verification. The effect of the WFS1 mutation on the function and structure of the wolframin protein was predicted by multiple computational software. From the Gene Expression Omnibus (GEO) database, we obtained GSE40585 dataset and performed enrichment analyses. The family clinically manifested as autosomal dominant NSHL. A novel WFS1 c.2421C>G (p.Ser807Arg) mutation was identified in four affected individuals in the pedigree. The p.Ser807Arg mutation is a highly conserved residue and causes an increase in protein stability. It had an important influence on not only amino acid size, charge and hydrophobicity but also protein intermolecular hydrogen bonding and spatial structure. There were differentially expressed genes (DEGs) in GSE40585 dataset. Enrichment analysis revealed that DEGs mainly functioned in amino acid metabolism, signal transduction and dephosphorylation. We reported a novel mutation c.2421C>G (p.Ser807Arg in WFS1. This study expands the mutation spectrum of WFS1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据