4.6 Article

Stabile fluoro-benzene-based spacer for lead-free Dion-Jacobson perovskites

期刊

RSC ADVANCES
卷 13, 期 2, 页码 1185-1193

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2ra07675f

关键词

-

向作者/读者索取更多资源

Two-dimensional perovskite materials, particularly lead-based perovskites, are promising for next-generation wide band gap devices due to their superior optoelectronic properties. However, device commercialization is hindered by stability and toxic element issues. By using fluoro-benzene-based divalent ammonium spacer cations and replacing Zn2+ with Pb2+, the stability of two-dimensional perovskites can be improved. These stable lead-free wide band gap structures exhibit better carrier mobility at high-temperature regions, making them suitable for optoelectronic applications at higher temperatures.
Two-dimensional perovskite materials have been investigated as potential candidates for next-generation-wide band gap devices and lead-based perovskites are the most common materials within two-and three-dimensional structures due to their superior optoelectronic properties. Nevertheless, the stability and toxic element issues are the two significant shortcomings of device commercialization. The fluoro-benzene-based divalent ammonium spacer cations and replacing Zn2+ with Pb2+ will improve the two-dimensional perovskite stability. These stable lead-free wide band gap two-dimensional structures have better carrier mobility at high-temperature regions. Therefore, lead-free two-dimensional perovskites might be suitable for higher temperatures optoelectronic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据