4.7 Article

The Efficacious Benefit of 25-Hydroxy Vitamin D to Prevent COVID-19: An In-Silico Study Targeting SARS-CoV-2 Spike Protein

期刊

NUTRIENTS
卷 14, 期 23, 页码 -

出版社

MDPI
DOI: 10.3390/nu14234964

关键词

25-hydroxy vitamin D; Lopinavir; COVID-19; docking; simulation; Coronavirus

向作者/读者索取更多资源

In the aftermath of the COVID-19 pandemic, the environment has quickly turned to proven specialist task forces to develop public health policies and measures to mitigate the impact of emerging coronaviruses. Recent studies have indicated that daily intake of 10 μg of 25-hydroxy vitamin D is recommended for keeping safe. This study investigates the role of 25-hydroxy vitamin D in preventing COVID-19 infection through in-silico experiments and suggests that it may be more effective than Lopinavir.
The environment has rapidly looked at proven specialist task forces in the aftermath of the COVID-19 pandemic to build public health policies and measures to mitigate the effects of emerging coronaviruses. According to the researchers, taking 10 mu g of 25-hydroxy vitamin D daily is recommended to keep us safe. There have been several studies recently indicating that there is a reduced risk of contracting Coronavirus by 25-hydroxy vitamin D consumption, even though there is no scientific data to prove that one would not affect the COVID-19 viral infection by 25-hydroxy vitamin D consumption. In this regard, the present study investigates the important literature and the role of 25-hydroxy vitamin D to prevent COVID-19 infection by conducting an in-silico study with SARS-CoV-2 spike protein as a target. Lopinavir, a previously reported drug candidate, served as a reference standard for the study. MD simulations were carried out to improve predictions of receptor-ligand complexes which offer novelty and strength to the current study. MD simulation protocols were explored and subjected to 25-hydroxy vitamin D and a known drug, Lopinavir. Comparison of ligands at refined models to the crystal structure led to promising results. Appropriate timescale simulations have been used to understand the activation mechanism, the role of water networks for receptor function, and the ligand binding process. Furthermore, MD simulations in combination with free energy calculations have also been carried out for lead optimization, evaluation of ligand binding modes, and assessment of ligand selectivity. From the results, 25-hydroxy vitamin D was discovered to have the vital interaction and highest potency in LBE, lower RMSD, and lower inhibition intensity similar to the standard. The findings from the current study suggested that 25-hydroxy vitamin D would be more effective in treating COVID-19. Compared with Lopinavir, 25-hydroxy vitamin D had the most potent interaction with the putative binding sites of the SARS-CoV-2 spike protein of COVID-19.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据