4.6 Article

Engineering Properties of Green and Ecofriendly Grouting Materials with Different Sand Filling Ratios

期刊

MATERIALS
卷 16, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/ma16020837

关键词

green and ecofriendly grouting material; superplasticizers; engineering properties; sand filling ratio

向作者/读者索取更多资源

With the growth of offshore wind power worldwide, the development of a green and eco-friendly grouting material (GEGM) has become a global focus. In this study, a GEGM using environmentally friendly recycled materials was developed for future offshore wind turbine construction. Various factors such as water-to-binder ratios, replacement of cement, addition of superplasticizers, and sand content were evaluated to determine the mechanical properties, workability, and durability of the GEGM. The study results provide reliable information and can serve as a reference for future construction projects.
With the active development of offshore wind power worldwide, the development of a green and ecofriendly grouting material (GEGM) has garnered global attention. Such a material must also be developed in Taiwan. Therefore, in this study, a series of environmentally friendly recycled materials were mixed in different proportions to develop a GEGM which can be implemented in the future construction of offshore wind turbines. To evaluate the mechanical properties of the GEGM, low water-to-binder (W/B) ratios (i.e., 0.21, 0.27, and 0.35) were used; cement was replaced with fixed amounts (20%) of ground granulated blast-furnace slag and fly ash; 2%, 2.5%, and 3% superplasticizers (SPs) were added; and two levels of sand content (60% and 70%) were used. The setting time of the GEGM was used to evaluate its workability; its compressive strength and flexural strength were used to evaluate its mechanical properties; and its sulfate resistance, length changes, and four-terminal resistance were used to evaluate its durability. The relationship between the durability and drying shrinkage of the GEGM was subsequently evaluated, and the ratio of final to initial setting times (F/I value) was calculated to determine the effects of the amount of SP added on workability. The highest F/I value (7.7) was achieved when 2 wt.% modified lignin sulfonate (MLS) was added because of the high viscosity of MLS, which compromised the workability of the concrete. The optimal compressive strength (83.62 MPa) was achieved when a W/B ratio of 0.21 was used, when the sand content was 70%, and when a 2% polycarboxylate superplasticizer (PCE) was added, whereas the optimal flexural strength (20.86 MPa) was achieved when 2.5% PCE was added. According to the nondestructive test results and the R2 value (>0.7) obtained from regression analyses of mechanical properties, the study results are reliable and may serve as a reference for future construction projects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据