4.8 Article

In Situ Immobilizing Atomically Dispersed Ru on Oxygen-Defective Co3O4 for Efficient Oxygen Evolution

期刊

ACS CATALYSIS
卷 13, 期 4, 页码 2462-2471

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.2c04946

关键词

defect-induced; in situ deposition strategy; oxygen vacancy defects; single-atom doping; electron decentralization; oxygen evolution reaction

向作者/读者索取更多资源

The synergistic regulation of the electronic structures of transition-metal oxide-based catalysts via oxygen vacancy defects and single-atom doping is efficient to boost their oxygen evolution reaction (OER) performance. In this study, a facile defect-induced in situ single-atom deposition strategy is developed to anchor atomically dispersed Ru single-atom onto oxygen vacancy-rich cobalt oxides (Ru/Co3O4-x) based on the spontaneous redox reaction between Ru3+ ions and nonstoichiometric Co3O4-x. The as-prepared Ru/Co3O4-x electrocatalyst with the coexistence of oxygen vacancies and Ru atoms exhibits excellent performances toward OER.
The synergistic regulation of the electronic structures of transition-metal oxide-based catalysts via oxygen vacancy defects and single -atom doping is efficient to boost their oxygen evolution reaction (OER) performance, which remains challenging due to complex synthetic procedures. Herein, a facile defect-induced in situ single-atom deposition strategy is developed to anchor atomically dispersed Ru single-atom onto oxygen vacancy-rich cobalt oxides (Ru/Co3O4-x) based on the spontaneous redox reaction between Ru3+ ions and nonstoichiometric Co3O4-x. Accordingly, the as-prepared Ru/Co3O4-x electrocatalyst with the coex-istence of oxygen vacancies and Ru atoms exhibits excellent performances toward OER with a low overpotential of 280 mV at 10 mA cm(-2), a small Tafel slope value of 86.9 mV dec(-1), and good long-term stability in alkaline media. Furthermore, density functional theory calculations uncover that oxygen vacancy and atomically dispersed Ru could synergistically tailor electron decentralization and d-band center of Co atoms, further optimizing the adsorption of oxygen-based intermediates (*OH, *O, and *OOH) and reducing the reaction barriers of OER. This work proposes an available strategy for constructing electrocatalysts with abundant oxygen vacancies and atomically dispersed noble metal and presents a deep understanding of synergistic electronic engineering of transition-metal-based catalysts to boost oxygen evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据