4.8 Article

Air-Stable Single-Component Pd-Catalysts for Vinyl-Addition Polymerization of Functionalized Norbornenes

期刊

ACS CATALYSIS
卷 12, 期 24, 页码 15076-15090

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.2c04345

关键词

Pd-catalyst; (NHC)Pd-complex; vinyl-addition polymerization; norbornene; functionalized norbornene

资金

  1. Russian Science Foundation [21-73-20246, 20-13-00428]
  2. Ministry of Science and Higher Education of the Russian Federation [075-00697-22-00]

向作者/读者索取更多资源

This paper introduces cationic Pd-complexes with N-heterocyclic carbene ligands and weak coordinating anion ligands as efficient single-component catalysts for vinyl-addition polymerization of norbornene. These complexes exhibit good activity and tolerance to functional groups, and can polymerize monomers at low catalyst loadings, even in the presence of air.
Well-defined single-component and tolerant Ru-, Mo-, and W-catalysts have been earlier developed for ring-opening metathesis polymerization of norbornene and its derivatives. Another way of norbornene polymerization-vinyl-addition polymerization (VAP)-is a more thermodynamically favorable process and gives polymers with saturated and rigid main chains. Single-component catalysts for VAP are required, which combine good activity, tolerance to functional groups, resistance to oxygen, and air moisture and are capable of catalyzing living VAP of norbornenes. Herein, we have shown that cationic Pd-complexes with N-heterocyclic carbene ligands (NHC ligands) and weak coordinating anion ligands ([(NHC)Pd(allyl)L]+A-, where allyl is an allyl group, L = CO, CH3CN, CH2Cl2, and A- = SbF6- or BARF-) are highly efficient single-component catalysts for VAP of both norbornene and various substituted norbornenes. These complexes, being stable in the solid state and in solutions, have exhibited several important features as VAP catalysts. They are capable of catalyzing VAP of norbornenes in air and are tolerant to functional groups. The complexes have shown high catalytic activity and have allowed polymerizing monomers at very low catalyst loadings, as low as 2 ppm. The versatility of [(NHC)Pd(allyl)L]+A- complexes as catalysts of VAP has been demonstrated by successful polymerization of monomers with polar and bulky groups, containing alkyl, vinyl, alkylidene, ether, ester, imide, or organosilicon motifs, affording high-molecular-weight products in good and high yields. Tuning the nature of NHC and allyl ligands in [(NHC)Pd(allyl)L]+A- complexes let perform living VAP, yielding block copolymers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据