4.8 Article

Genetically Encoded Photosensitizer Protein Reduces Iron-Sulfur Clusters of Radical SAM Enzymes

期刊

ACS CATALYSIS
卷 13, 期 2, 页码 1240-1245

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.2c05143

关键词

metalloprotein; photoreductant; iron-sulfur cluster; radical SAM enzyme; low reduction potential

向作者/读者索取更多资源

The study demonstrates that the photosensitizer protein PSP2 can efficiently reduce the [4Fe-4S] cluster of radical SAM enzymes, facilitating their activity. Moreover, PSP2 is shown to reduce the [4Fe-4S] cluster of a noncanonical radical SAM enzyme Dph2 and assist in substrate modification. Therefore, PSP2 serves as a powerful tool for studying radical SAM enzymes with clusters of low reduction potential.
Radical S-adenosylmethionine (SAM) enzymes are a family of proteins with hundreds of thousands of members that all contain an essential [4Fe-4S] cluster. The [4Fe-4S] cluster needs to be reduced to cleave SAM and generate a 5'-deoxyadenosyl or 3-amino-3-carboxypropyl radical. Due to the low reduction potential of the [4Fe-4S] cluster, dithionite has been widely used in studies on the activity of radical SAM enzymes in vitro. Inspired by the efficient photoreduction of the [4Fe-4S] cluster in natural photosystem I, we applied the 27 kDa photosensitizer protein PSP2, which we reported previously, to reduce the [4Fe-4S] cluster of radical SAM enzymes. Herein, we demonstrate that light-activated PSP2 generates a PSP2 radical, which is capable of reducing the catalytic [4Fe-4S] cluster of the radical SAM enzyme BtrN. PSP2-reduced BtrN cleaves SAM to generate 5'-deoxyadenosine and converts the substrate 2-deoxy-scyllo-inosamine to 3-amino-2,3-dideoxy-scyllo-inosose. Remarkably, our study shows that PSP2 can reduce the auxiliary [4Fe-4S] cluster of BtrN that has the lowest reduction potential among the known radical SAM enzymes and cannot be reduced by dithionite. The reduction of this auxiliary cluster experimentally proves its function in product formation. In addition, we show that PSP2 can reduce the [4Fe-4S] cluster of Dph2, a noncanonical radical SAM enzyme involved in diphthamide biosynthesis, and help the modification of the substrate protein elongation factor 2. Therefore, PSP2 is a powerful photoreductant for radical SAM enzymes and a useful tool for studying clusters with low reduction potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据