4.8 Article

High-lying valley-polarized trions in 2D semiconductors

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-33939-w

关键词

-

资金

  1. Projekt DEAL

向作者/读者索取更多资源

The authors observed tightly bound, valley-polarized, UV-emissive trions in monolayer transition metal dichalcogenide transistors. These trions have markedly different optical selection rules compared to band-edge trions and their properties can be controlled by an electrical gate, enabling excitonic quantum interference.
Here, the authors observe tightly bound, valley-polarized, UV-emissive trions in monolayer transition metal dichalcogenide transistors. These are quasiparticles composed of an electron from a high-lying conduction band with negative effective mass, a hole from the first valence band, and an additional charge from a band-edge state. Optoelectronic functionalities of monolayer transition-metal dichalcogenide (TMDC) semiconductors are characterized by the emergence of externally tunable, correlated many-body complexes arising from strong Coulomb interactions. However, the vast majority of such states susceptible to manipulation has been limited to the region in energy around the fundamental bandgap. We report the observation of tightly bound, valley-polarized, UV-emissive trions in monolayer TMDC transistors: quasiparticles composed of an electron from a high-lying conduction band with negative effective mass, a hole from the first valence band, and an additional charge from a band-edge state. These high-lying trions have markedly different optical selection rules compared to band-edge trions and show helicity opposite to that of the excitation. An electrical gate controls both the oscillator strength and the detuning of the excitonic transitions, and therefore the Rabi frequency of the strongly driven three-level system, enabling excitonic quantum interference to be switched on and off in a deterministic fashion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据