4.8 Article

XNAzymes targeting the SARS-CoV-2 genome inhibit viral infection

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-34339-w

关键词

-

资金

  1. Wellcome Trust [215453/Z/19/Z]
  2. Royal Society [215453/Z/19/Z]
  3. MRC (TSF) [MR/T032413/1]
  4. Addenbrooke's Charitable Trust [900239]
  5. NIHR Cambridge BRC
  6. NHSBT [WPA15-02]
  7. Wellcome Trust [215453/Z/19/Z] Funding Source: Wellcome Trust

向作者/读者索取更多资源

This study shows the design, synthesis, and screening of artificial RNA endonuclease XNAzymes capable of cleaving genomic SARS-CoV-2 RNA and self-assembling into enzymatic nanostructures inhibiting cellular viral replication.
The unprecedented emergence and spread of SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, underscores the need for diagnostic and therapeutic technologies that can be rapidly tailored to novel threats. Here, we show that site-specific RNA endonuclease XNAzymes - artificial catalysts composed of single-stranded synthetic xeno-nucleic acid oligonucleotides (in this case 2'-deoxy-2'-fluoro-beta-D-arabino nucleic acid) - may be designed, synthesised and screened within days, enabling the discovery of a range of enzymes targeting SARS-CoV-2 ORF1ab, ORF7b, spike- and nucleocapsid-encoding RNA. Three of these are further engineered to self-assemble into a catalytic nanostructure with enhanced biostability. This XNA nanostructure is capable of cleaving genomic SARS-CoV-2 RNA under physiological conditions, and when transfected into cells inhibits infection with authentic SARS-CoV-2 virus by RNA knockdown. These results demonstrate the potential of XNAzymes to provide a platform for the rapid generation of antiviral reagents. RNA viruses have been responsible for large-scale epidemics and pandemics throughout the last few centuries. Here, the authors show the design, synthesis and screening of artificial RNA endonuclease XNAzymes capable of cleaving genomic SARS-CoV-2 RNA and self-assembling into enzymatic nanostructures inhibiting cellular viral replication.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据