4.8 Article

Iron-sulfur clusters are involved in post-translational arginylation

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-36158-z

关键词

-

向作者/读者索取更多资源

ATE1 is an enzyme that catalyzes post-translational modification in eukaryotes, regulating protein stability and half-life. This study reveals the presence of an [Fe-S] cluster in ATE1, which is linked to its enzymatic activity and yeast stress response. This finding provides new insights into the regulatory mechanism of ATE1.
Eukaryotic arginylation is an essential post-translational modification that modulates protein stability and regulates protein half-life. Arginylation is catalyzed by a family of enzymes known as the arginyl-tRNA transferases (ATE1s), which are conserved across the eukaryotic domain. Despite their conservation and importance, little is known regarding the structure, mechanism, and regulation of ATE1s. In this work, we show that ATE1s bind a previously undiscovered [Fe-S] cluster that is conserved across evolution. We characterize the nature of this [Fe-S] cluster and find that the presence of the [Fe-S] cluster in ATE1 is linked to its arginylation activity, both in vitro and in vivo, and the initiation of the yeast stress response. Importantly, the ATE1 [Fe-S] cluster is oxygen-sensitive, which could be a molecular mechanism of the N-degron pathway to sense oxidative stress. Taken together, our data provide the framework of a cluster-based paradigm of ATE1 regulatory control. The enzyme ATE1 catalyzes eukaryotic post-translation arginylation, a key protein modification necessary for cellular homeostasis. Here, the authors show that ATE1s are previously unrealized iron-sulfur proteins that use this oxygen-sensitive inorganic cofactor to control cellular arginylation

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据