4.8 Article

kHz-precision wavemeter based on reconfigurable microsoliton

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-35728-x

关键词

-

向作者/读者索取更多资源

The authors propose a universal mechanism to fully control microcombs and demonstrate a wavemeter with a precision of kHz. Microcombs offer a unique and compact solution for various photonics applications. The proposed mechanism stabilizes the microcomb frequency, enabling its use in wavelength measurement with high precision.
Microcombs are vulnerable to the environmental perturbations. Here, the authors propose a universal mechanism to fully control the microcombs. Based this reconfigurable microsoliton, a wavemeter with a precision of kHz is demonstrated. The mode-locked microcomb offers a unique and compact solution for photonics applications, ranging from the optical communications, the optical clock, optical ranging, the precision spectroscopy, novel quantum light source, to photonic artificial intelligence. However, the photonic micro-structures are suffering from the perturbations arising from environment thermal noises and also laser-induced nonlinear effects, leading to the frequency instability of the generated comb. Here, a universal mechanism for fully stabilizing the microcomb is proposed and experimentally verified. By incorporating two global tuning approaches and the autonomous thermal locking mechanism, the pump laser frequency and repetition rate of the microcomb can be controlled independently in real-time without interrupting the microcomb generation. The high stability and controllability of the microcomb frequency enables its application in wavelength measurement with a precision of about 1 kHz. The approach for the full control of comb frequency could be applied in various microcomb platforms, and improve their performances in timing, spectroscopy, and sensing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据