4.8 Article

Decoupling light absorption and carrier transport via heterogeneous doping in Ta3N5 thin film photoanode

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-35538-1

关键词

-

资金

  1. National Natural Science Foundation of China [21872019]
  2. University of Tokyo Advanced Characterization Nanotechnology Platform in the Nanotechnology Platform Project - Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan [JPMXP09-A-20-UT-0004]

向作者/读者索取更多资源

This study presents a heterogeneous doping strategy that decouples light absorption and carrier transport in semiconductor thin film photoelectrodes, improving their efficiency for solar-to-hydrogen conversion.
The trade-off between light absorption and carrier transport in semiconductor thin film photoelectrodes is a major limiting factor of their solar-to-hydrogen efficiency for photoelectrochemical water splitting. Herein, we develop a heterogeneous doping strategy that combines surface doping with bulk gradient doping to decouple light absorption and carrier transport in a thin film photoelectrode. Taking La and Mg doped Ta3N5 thin film photoanode as an example, enhanced light absorption is achieved by surface La doping through alleviating anisotropic optical absorption, while efficient carrier transport in the bulk is maintained by the gradient band structure induced by gradient Mg doping. Moreover, the homojunction formed between the La-doped layer and the gradient Mg-doped layer further promotes charge separation. As a result, the heterogeneously doped photoanode yields a half-cell solar-to-hydrogen conversion efficiency of 4.07%, which establishes Ta3N5 as a leading performer among visible-light-responsive photoanodes. The heterogeneous doping strategy could be extended to other semiconductor thin film light absorbers to break performance trade-offs by decoupling light absorption and carrier transport.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据