4.8 Article

Structural basis of transcription recognition of a hydrophobic unnatural base pair by T7 RNA polymerase

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-35755-8

关键词

-

向作者/读者索取更多资源

This study reveals the mechanism of how T7 RNA polymerase recognizes unnatural base pairs, providing a theoretical basis for synthesizing RNA molecules with synthetic modifications and unnatural base pairs.
T7 RNA polymerase (RNAP) is widely used for synthesizing RNA molecules with synthetic modifications and unnatural base pairs (UBPs). Here, authors show the structural basis of how UBPs are recognized as template and substrate, providing mechanistic insights into UBP transcription by T7 RNAP. Bacteriophage T7 RNA polymerase (T7 RNAP) is widely used for synthesizing RNA molecules with synthetic modifications and unnatural base pairs (UBPs) for a variety of biotechnical and therapeutic applications. However, the molecular basis of transcription recognition of UBPs by T7 RNAP remains poorly understood. Here we focused on a representative UBP, 7-(2-thienyl)-imidazo[4,5-b]pyridine (Ds) and pyrrole 2-carbaldehyde (Pa), and investigated how the hydrophobic Ds-Pa pair is recognized by T7 RNAP. Our kinetic assays revealed that T7 RNAP selectively recognizes the Ds or Pa base in the templates and preferentially incorporates their cognate unnatural base nucleotide substrate (PaTP or DsTP) over natural NTPs. Our structural studies reveal that T7 RNAP recognizes the unnatural substrates at the pre-insertion state in a distinct manner compared to natural substrates. These results provide mechanistic insights into transcription recognition of UBP by T7 RNAP and provide valuable information for designing the next generation of UBPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据