4.8 Article

Strong room-temperature bulk nonlinear Hall effect in a spin-valley locked Dirac material

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-35989-0

关键词

-

向作者/读者索取更多资源

The nonlinear Hall effect (NLHE) is a new type of Hall effect with wide application prospects. Previous NLHEs have mostly been observed at low temperatures, but researchers have discovered a strong bulk NLHE at room temperature in BaMnSb2 material. This finding opens up new possibilities for wireless microwave detection and frequency doubling.
Nonlinear Hall effect (NLHE) is a new type of Hall effect with wide application prospects. Practical device applications require strong NLHE at room temperature (RT). However, previously reported NLHEs are all low-temperature phenomena except for the surface NLHE of TaIrTe4. Bulk RT NLHE is highly desired due to its ability to generate large photocurrent. Here, we show the spin-valley locked Dirac state in BaMnSb2 can generate a strong bulk NLHE at RT. In the microscale devices, we observe the typical signature of an intrinsic NLHE, i.e. the transverse Hall voltage quadratically scales with the longitudinal current as the current is applied to the Berry curvature dipole direction. Furthermore, we also demonstrate our nonlinear Hall device's functionality in wireless microwave detection and frequency doubling. These findings broaden the coupled spin and valley physics from 2D systems into a 3D system and lay a foundation for exploring bulk NLHE's applications. The nonlinear Hall effect (NLHE) results in a second-harmonic transverse voltage in response to alternating longitudinal current in zero magnetic field and has so far only been observed at low temperatures in bulk materials. Here, the authors observe bulk NLHE at room temperature in the Dirac material BaMnSb2, which will provide a large photocurrent for applications in THz detection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据