4.8 Article

Bayesian deep learning for error estimation in the analysis of anomalous diffusion

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-34305-6

关键词

-

资金

  1. German Science Foundation (DFG) [491466077, ME 1535/12-1]

向作者/读者索取更多资源

Machine-learning techniques are used to decode anomalous-diffusion data and provide both predicted output and uncertainty estimates.
Modern single-particle-tracking techniques produce extensive time-series of diffusive motion in a wide variety of systems, from single-molecule motion in living-cells to movement ecology. The quest is to decipher the physical mechanisms encoded in the data and thus to better understand the probed systems. We here augment recently proposed machine-learning techniques for decoding anomalous-diffusion data to include an uncertainty estimate in addition to the predicted output. To avoid the Black-Box-Problem a Bayesian-Deep-Learning technique named Stochastic-Weight-Averaging-Gaussian is used to train models for both the classification of the diffusion model and the regression of the anomalous diffusion exponent of single-particle-trajectories. Evaluating their performance, we find that these models can achieve a well-calibrated error estimate while maintaining high prediction accuracies. In the analysis of the output uncertainty predictions we relate these to properties of the underlying diffusion models, thus providing insights into the learning process of the machine and the relevance of the output. Diffusive motions in complex environments such as living biological cells or soft matter systems can be analyzed with single-particle-tracking approaches, where accuracy of output may vary. The authors involve a machine-learning technique for decoding anomalous-diffusion data and provide an uncertainty estimate together with predicted output.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据