4.8 Article

Paired electrolysis-enabled nickel-catalyzed enantioselective reductive cross-coupling between α-chloroesters and aryl bromides

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-35073-z

关键词

-

资金

  1. National Key R&D Program of China [2021YFA1500100]
  2. NSF of China [21821002, 21772222, 91956112]
  3. S&TCSM of Shanghai [18JC1415600, 20JC1417100]
  4. Bayer AG (Germany)
  5. China Postdoctoral Science Foundation [2020M671274]

向作者/读者索取更多资源

In this study, the authors investigated the electrochemical asymmetric catalysis by utilizing both the anode and cathode as working electrodes. The asymmetric cross-coupling between alpha-chloroesters and aryl bromides was successfully achieved, demonstrating the synergistic involvement of cathodic reduction and anodic oxidation in the paired electrolysis. This electrolytic method provides a promising alternative for asymmetric catalysis in organic synthesis.
Electrochemical asymmetric catalysis has emerged as a sustainable and promising approach to the production of chiral compounds and the utilization of both the anode and cathode as working electrodes would provide a unique approach for organic synthesis. However, precise matching of the rate and electric potential of anodic oxidation and cathodic reduction make such idealized electrolysis difficult to achieve. Herein, asymmetric cross-coupling between alpha-chloroesters and aryl bromides is probed as a model reaction, wherein alkyl radicals are generated from the alpha-chloroesters through a sequential oxidative electron transfer process at the anode, while the nickel catalyst is reduced to a lower oxidation state at the cathode. Radical clock studies, cyclic voltammetry analysis, and electron paramagnetic resonance experiments support the synergistic involvement of anodic and cathodic redox events. This electrolytic method provides an alternative avenue for asymmetric catalysis that could find significant utility in organic synthesis. Precise matching of reaction rate and electric potential of electrodes in paired electrolysis is challenging. Here, the authors develop paired-electrolysis-enabled nickel-catalyzed enantioselective reductive cross-coupling of alpha-chloroesters and aryl bromides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据