4.6 Article

Geometric correction factor for transepithelial electrical resistance measurements in transwell and microfluidic cell cultures

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/49/37/375401

关键词

transepithelial electrical resistance; electrical impedance spectroscopy; interdigitated electrodes; microfluidics; transwell; geometric correction factor

资金

  1. CIBER-BBN
  2. CSIC [PIE-201450E116]
  3. Ministerio de Economia y Competitividad [SAF2014-62114-EXP, DPI2015-65401-C3-3-R]
  4. Instituto de Salud Carlos III

向作者/读者索取更多资源

Transepithelial electrical resistance (TEER) measurements are regularly used in in vitro models to quantitatively evaluate the cell barrier function. Although it would be expected that TEER values obtained with the same cell type and experimental setup were comparable, values reported in the literature show a large dispersion for unclear reasons. This work highlights a possible error in a widely used formula to calculate the TEER, in which it may be erroneously assumed that the entire cell culture area contributes equally to the measurement. In this study, we have numerically calculated this error in some cell cultures previously reported. In particular, we evidence that some TEER measurements resulted in errors when measuring low TEERs, especially when using Transwell inserts 12 mm in diameter or microfluidic systems that have small chamber heights. To correct this error, we propose the use of a geometric correction factor (GCF) for calculating the TEER. In addition, we describe a simple method to determine the GCF of a particular measurement system, so that it can be applied retrospectively. We have also experimentally validated an interdigitated electrodes (IDE) configuration where the entire cell culture area contributes equally to the measurement, and it also implements minimal electrode coverage so that the cells can be visualized alongside TEER analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据