4.8 Article

Preparation of MOF/polypyrrole and flower-like MnO2 electrodes by electrodeposition: High-performance materials for hybrid capacitive deionization defluorination

期刊

WATER RESEARCH
卷 229, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2022.119441

关键词

Fluoride removal; Capacitive deionization; Removal capacity; Metal organic framework; Electrophoretic deposition; Electrosorption

向作者/读者索取更多资源

Fluorine pollution is a global public health problem and adsorption is the primary method for removing fluoride from drinking water. However, it has limitations such as difficulty in recovering the adsorbent and causing secondary pollution. Capacitive deionization (CDI) has gained attention due to its simple operation, low energy consumption, and minimal environmental impact. In this study, CZBN/PPy-MnO2 system was developed as an effective method for fluorine removal, exhibiting high selectivity and stability.
Fluorine pollution has become a global public health problem due to its adverse health effects. Adsorption is the primary method for removing fluoride from drinking water. However, the adsorption method has disadvantages such as difficulty in recovering the adsorbent, and the need to add additional chemicals for regeneration, thereby causing secondary pollution, which limits further industrial applications. Capacitive deionization (CDI), as an emerging water treatment technology, has attracted widespread attention due to its advantages of simple operation, low energy consumption and less environmental impact. In this study, a polypyrrole (PPy) film was prepared on a graphite substrate by electrodeposition, and then metal-organic framework Ce/Zn-BDC-NH2 (CZBN) was deposited on the PPy film by electrophoretic deposition to obtain CZBN/PPy electrode was obtained. The CZBN/PPy anode was then coupled with the MnO2 cathode for capacitive removal of fluoride in a CDI cell. Both CZBN/PPy and MnO2 electrodes exhibit pseudocapacitive behavior, which can selectively and reversibly intercalate F- (CZBN/PPy) and Na+ (MnO2) ions. As expected, the CZBN/PPy-MnO2 system exhibits excellent fluorine removal performance. In 1.2 V, 100 mg/L F- solution, the F- removal capacity can reach 55.12 mg/g. It has high F- selectivity in the presence of some common anions, and can maintain high F- removal ability even after five adsorption regeneration processes. The mechanism of F- removal was studied by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). F- was mainly removed by electro-static interaction and ion exchange with hydroxyl. The excellent defluorination performance of the CZBN/PPy-MnO2 system makes it have good practical application prospects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据