4.8 Article

The removal of micropollutants from treated effluent by batch-operated pilot-scale constructed wetlands

期刊

WATER RESEARCH
卷 230, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2022.119494

关键词

Post -treatment; Municipal wastewater effluent; Bark; Biochar; Aeration; Constructed wetland

向作者/读者索取更多资源

This study aimed to improve the removal of micropollutants (MPs) in constructed wetlands (CWs) by optimizing the design of batch-operated CWs, and found that using bark-biochar as a support matrix significantly increased the removal of MPs compared to traditional sand-filled CWs.
Micropollutants (MPs), such as pharmaceuticals and antibiotics, are present in the environment at low concentrations (ng/L-mu g/L). A constructed wetland (CW) is a nature-based wastewater treatment technology, which can be used to remove MPs from wastewater treatment plant effluent. This study aimed to improve MP removal of CWs by optimizing the design of batch-operated CW. Three pilot-scale CWs were built to study the effect of two design-features: the use of a support matrix (a mixture of bark and biochar) and continuous aeration. The use of bark-biochar as support matrix increased the removal of 11 of 12 studied MPs compared to the CW filled with conventional material sand. The highest improved removal by the addition of bark-biochar was more than 40% (median) for irbesartan, carbamazepine, hydrochlorothiazide and benzotriazole. Aerating the bed of the barkbiochar CW did not change MP removal. Besides, the presence of bark-biochar also enhanced the removal of total nitrogen during 10 months of operation, but no improvement was observed on the total organic carbon and total phosphorus removal. Considering the application in a batch-operated CW, MP removal can be greatly enhanced by replacing sand with bark-biochar that will act as MP adsorbing matrix.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据