4.8 Article

Comparative cytotoxicity, endocrine-disrupting effects, oxidative stress of halophenolic disinfection byproducts and the underlying molecular mechanisms revealed by transcriptome analysis

期刊

WATER RESEARCH
卷 229, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2022.119458

关键词

Halophenolic disinfection byproducts; Cytotoxicity; Endocrine -disrupting effects; Transcriptomics; WGCNA

向作者/读者索取更多资源

Halophenolic disinfection byproducts (DBPs) are emerging pollutants that have adverse effects on human cells and need further exploration of molecular mechanisms. Substituting halophenolic DBPs with the same halogen leads to greater cytotoxicity when there are more substitution sites. Iodophenols are the most toxic, followed by bromo-phenols and chlorophenols when substituted at the same sites. Some of these DBPs showed significant endocrine-disrupting effects at sublethal concentrations.
Halophenolic disinfection byproducts (DBPs) are a class of emerging pollutants whose adverse effects on human cells and the underlying molecular mechanisms still need further exploration. In this study, we found that when halophenolic DBPs were substituted with the same halogen, the more substitution sites, the more cytotoxic, while when they were substituted at the same sites, the most toxic chemical was iodophenols, followed by bromo-phenols and chlorophenols. In addition, several of them exerted significant endocrine-disrupting effects at sublethal concentrations. 2,4,6-triiodophenol (TIP) and 2,4-dichlorophenol (2,4-DCP) showed the highest estradiol equivalent factor (EEF) of 4.41 x 10-8 and flutamide equivalent factor (FEF) of 0.4, respectively. Furthermore, all of the halophenolic DBPs except for 2-chlorophenol (2-CP) and 2-bromophenol (2-BP) signifi-cantly increased the levels of reactive oxygen species (ROS) or 8-hydroxydeoxyguanosine (8-OHdG) in HepG2 cells. The lowest cytotoxicity and unchanged ROS and 8-OHdG levels after 2-CP exposure may result from the activation of the transporters of the adenosine triphosphate (ATP) binding cassette in cells. Transcriptome analysis revealed distinct grouping patterns of 2-CP, 2,6-dibromophenol (2,6-DBP), and TIP at the concentrations of EC20, and the top differentially expressed genes (DEGs) were involved in the antioxidant-, immune-, and endocrine-associated systems. The weighted gene correlation network analysis well connected the phenotypes (EC50, EEF, FEF, ROS, 8-OHdG, and ABC transporters) with the DEGs and revealed that the MAPK signaling pathway played a vital role in regulating the biological response after exposure to halophenolic DBPs. This study provides deep insights into the underlying mechanisms of the toxic effects induced by halophenolic DBPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据