4.8 Article

Channel abandonment alters trophic characteristics of highland rivers

期刊

WATER RESEARCH
卷 230, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2023.119590

关键词

Quanji river; Abandoned channel; Macroinvertebrates; Hydrological connectivity; Food web; Qinghai -Tibet Plateau

向作者/读者索取更多资源

The Qinghai-Tibet Plateau is a unique ecosystem that is vulnerable to both human and natural disturbances. The active fluvial processes and changes in river geomorphology on the plateau significantly alter the trophic characteristics of highland river systems.
The Qinghai-Tibet Plateau (QTP) serves as a collection of unique ecosystems featured as oligotrophic and hypometabolic conditions, and is particularly vulnerable to threats posed by anthropogenic and natural dis-turbances. Active fluvial processes on the QTP, especially the lateral migration of rivers and channel abandon-ment accompanied by variations in the hydrological connectivity, and changes in river geomorphology, intensively modify this highland river-floodplain system. However, little is known about how these processes alter the trophic characteristics of highland river system on earth. In this study, we conducted field investigations on a typical meandering river, the Quanji River (QR), located in the northeastern QTP by sampling macro -invertebrates, surveying trophic sources, and measuring a range of environmental conditions. Based on the collected data, we identified four biotopes for the QR through hierarchical clustering, established the repre-sentative food web for each biotope through the allometric diet breadth model, and estimated the biomass storage and flux within food web for each biotope through the biomass balance model. Our results show that the identified biotopes differed markedly in hydrological connectivity. Biotopes 1 and 2, which were in the main river channel represented the condition of high connectivity, Biotope 3 in the open channel represented the median connectivity, while Biotope 4 in the semi-open/closed channel represented the low connectivity. In contrast to the unimodal pattern commonly observed in lowland rivers, indices for the highland QR, including the taxa richness, trophic group richness, biomass flux, biomass transfer efficiency, and trophic stability demonstrated a single-valley response pattern to the hydrological connectivity. We argue that the intermediate disturbance hypothesis still works on highland river ecosystems, whereas the optimal disturbance occurs in the low connectivity rather than median connectivity. We attribute this skewness to the low resistance and resilience of highland macroinvertebrate community in the face of hydrodynamic disturbances brought by flood events, and the biological disturbances from the predation by endemic migratory fish (Gymnocypris przewalskii) in QR. This study reveals that lateral migration and channel abandonment play important roles in highland river sys-tems in the QTP in the context of biological and energetic perspectives and suggests that management strategies for highland rivers should be made different from those of lowland rivers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据